Course Title: Physics I
Course no: PHY-105                                                                                                                             Full Marks: 60+20+20
Credit hours: 3                                                                                                                                   Pass Marks: 24+8+8

Nature of course: Theory (3 Hrs.) + Lab (3 Hrs.)

Course Synopsis:   The course deals with related topics in Mechanics and electrodynamics.

Mechanics: Non Relativistic Particle dynamics, conservation laws,harmonic Oscillator, dynamics of rigid body, strength of materials, hydrodynamics.

Electrodynamics: Electrostatics, dielectrics, Electrostatic and magnetic energy,Maxwell's equation, propagation of electromagnetic wave. Laboratory works aredesigned to complement and supplement the theory course.

Goal: The course aims at introducing the concepts and methods of physics needed for application in various branch of modern science and technology.

Course Contents:

Mechanics

Unit 1. Newton's Law of Motion and Galilean Invariance                                                      2 Hrs.

  • Newton's laws of motion
  • Reference frame, Galilean transformation, Galilean Invariance
  • Transformation equations
  • Non inertial frames of reference fictious forces
    - Centrifugal and coriolis forces

Unit 2. Non Relativistic Particle Dynamics                                                                            4 Hrs.

  • Equation of motion of uncharged and charged particles, Charged particles in constant and alternating electric field
  • Charged particles in a fields, magnetic field- cyclotron, magnetic focusing
  • Charge particles in combined electric and magnetic field

Unit 3. Conservation Laws                                                                                                        7 Hrs.

  • Laws of conservation of momentum and energy.
  • Conservative forces, potential energy
  • Potential energy in electric and gravitational fields.
  • Non conservative forces, General laws of conservation of energy.
  • Collision in three dimensions, lab and cm. frames of reference, final velocities after collision, scattering angle
  • Law of conservation of angular momentum - rotational invariance of potential energy
  • Example - motion of a planet, Kepler's laws

Unit 4. Harmonic oscillator                                                                                                       6 Hrs.

  • Harmonic oscillator, energy, example: diatomic molecule
  • An harmonic oscillator - pendulum with large oscillation
  • Damped oscillations, power factor, Q – factor
  • Driven oscillations, resonance, phase and half width
  • LCR and parallel resonance circuits

Unit 5. Viscosity                                                                                                                        2 Hrs.

  • Viscosity, Newton’s law of viscous force, analogy between current flow and viscous flow
  • Motion of a body in a viscous medium

Electrodynamics

Unit 6. Electrostatics                                                                                                                  7 Hrs.

  • Electric field and electric potential
  • Divergence of E and Gauss's law, applications
  • Solution of electrostatic problems, Poisson's and Lap lace's equations
  • Solution of Lap laces equations in spherical cylindrical coordinates and rectangular coordinates
  • Examples conducting sphere in a uniform E field, method of images, point charge and a conducting sphere, line charde and line images, systems of conductors.
  • Solutions of Poisson’s equation

Unit 7. Dielectrics                                                                                                                      4 Hrs.      

  • Electric field in a dielectric media
    - Polarization, field inside and outside a dielectric gauss's law in a dielectric medium-displacement vector, electric susceptibility and dielectric constant
    - Boundary conditions on field vectors, boundary value problems in a dielectric medium, dielectric sphere in a uniform el. Field
  • Molecular theory of dielectrics, induced dipoles

Unit 8. Electrostatic Energy                                                                                                       1 Hr.

  • Potential energy of a group of charges and charge distributions, energy density.
  • Energy of a system of charged conductors

Unit 9. Magnetic Field Energy                                                                                                  1 Hr.

  • Vector, potential, and magnetic field
  • Energy density in the magnetic field, magnetic energy of coupled circuits.

Unit 10. Slowly Varying Current                                                                                               3 Hrs.

  • Transient and steady state behavior
  • Series and parallel connection of impedances
  • Power, power factor, Resonance

 

Unit 11. Maxwell’s Equation                                                                                                      6 Hrs.

  • Maxwell's equations - displacement current
  • Electromagnetic energy
  • Wave equations without and with source, boundary conditions

Laboratory works:   

  • To draw I-V characteristics of Ohmic and non Ohmic resisters and find voltage current ration.
  • To study the junction diode and LED characteristics.
  • To study the temperature dependence of resistance of a given semiconductors
  • To determine the moment of inertia of a fly wheel
  • To determine the modulus of rigidity for the material of a rod by using the horizontal pattern of the twisting apparatus.
  • To determine the terminal velocity and find coefficient of viscosity by Stoke's method.
  • To determine the surface tension of work with a capillary tube.
  • To determine the impedance of a given LCR circuit
  • To study characteristics of NPN transistor
  • To determine dielectric constant by using Lissagous pattern
  • To construct CE amplifier for the determination of the voltage gain of the amplifier
  • To study the characteristic of a Zener a diode (Switches) and use it to regulate power supply
  • To construct and study the working of NOT-AND-OR, NAND and NOR gates.
  • To construct and study the working of OR, NAN and NOR gates.

Text Books:

  • D.S. Mathur, Mechanics, S. Chand and Company Ltd
  • John R. Ritz, Frederick J. Milford and Robert W. Christy, Foundations of Electromagnetic theory, Narosa Publishing House.

References:
                      David J Griffith, Introduction to Electrodynamics, 2nd Edition, Prentice Hall of India, 1994

Prerequisite:
                     Calculus based introductory physics

Note:
                   Home work assignments: Several numerical problems to be given every week


All Credit goes to   www.csitascolhelp.blogspot.com

Post a Comment